Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, n__app(activate(XS), YS))
from(X) → cons(X, n__from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS)))
prefix(L) → cons(nil, n__zWadr(L, prefix(L)))
app(X1, X2) → n__app(X1, X2)
from(X) → n__from(X)
niln__nil
zWadr(X1, X2) → n__zWadr(X1, X2)
activate(n__app(X1, X2)) → app(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__zWadr(X1, X2)) → zWadr(X1, X2)
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, n__app(activate(XS), YS))
from(X) → cons(X, n__from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS)))
prefix(L) → cons(nil, n__zWadr(L, prefix(L)))
app(X1, X2) → n__app(X1, X2)
from(X) → n__from(X)
niln__nil
zWadr(X1, X2) → n__zWadr(X1, X2)
activate(n__app(X1, X2)) → app(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__zWadr(X1, X2)) → zWadr(X1, X2)
activate(X) → X

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

PREFIX(L) → PREFIX(L)
ACTIVATE(n__zWadr(X1, X2)) → ZWADR(X1, X2)
ACTIVATE(n__app(X1, X2)) → APP(X1, X2)
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
PREFIX(L) → NIL
APP(cons(X, XS), YS) → ACTIVATE(XS)
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__nil) → NIL
ACTIVATE(n__from(X)) → FROM(X)
ZWADR(cons(X, XS), cons(Y, YS)) → APP(Y, cons(X, n__nil))

The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, n__app(activate(XS), YS))
from(X) → cons(X, n__from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS)))
prefix(L) → cons(nil, n__zWadr(L, prefix(L)))
app(X1, X2) → n__app(X1, X2)
from(X) → n__from(X)
niln__nil
zWadr(X1, X2) → n__zWadr(X1, X2)
activate(n__app(X1, X2)) → app(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__zWadr(X1, X2)) → zWadr(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

PREFIX(L) → PREFIX(L)
ACTIVATE(n__zWadr(X1, X2)) → ZWADR(X1, X2)
ACTIVATE(n__app(X1, X2)) → APP(X1, X2)
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
PREFIX(L) → NIL
APP(cons(X, XS), YS) → ACTIVATE(XS)
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__nil) → NIL
ACTIVATE(n__from(X)) → FROM(X)
ZWADR(cons(X, XS), cons(Y, YS)) → APP(Y, cons(X, n__nil))

The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, n__app(activate(XS), YS))
from(X) → cons(X, n__from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS)))
prefix(L) → cons(nil, n__zWadr(L, prefix(L)))
app(X1, X2) → n__app(X1, X2)
from(X) → n__from(X)
niln__nil
zWadr(X1, X2) → n__zWadr(X1, X2)
activate(n__app(X1, X2)) → app(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__zWadr(X1, X2)) → zWadr(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

PREFIX(L) → PREFIX(L)
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
ACTIVATE(n__app(X1, X2)) → APP(X1, X2)
ACTIVATE(n__zWadr(X1, X2)) → ZWADR(X1, X2)
PREFIX(L) → NIL
APP(cons(X, XS), YS) → ACTIVATE(XS)
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__nil) → NIL
ACTIVATE(n__from(X)) → FROM(X)
ZWADR(cons(X, XS), cons(Y, YS)) → APP(Y, cons(X, n__nil))

The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, n__app(activate(XS), YS))
from(X) → cons(X, n__from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS)))
prefix(L) → cons(nil, n__zWadr(L, prefix(L)))
app(X1, X2) → n__app(X1, X2)
from(X) → n__from(X)
niln__nil
zWadr(X1, X2) → n__zWadr(X1, X2)
activate(n__app(X1, X2)) → app(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__zWadr(X1, X2)) → zWadr(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PREFIX(L) → PREFIX(L)

The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, n__app(activate(XS), YS))
from(X) → cons(X, n__from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS)))
prefix(L) → cons(nil, n__zWadr(L, prefix(L)))
app(X1, X2) → n__app(X1, X2)
from(X) → n__from(X)
niln__nil
zWadr(X1, X2) → n__zWadr(X1, X2)
activate(n__app(X1, X2)) → app(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__zWadr(X1, X2)) → zWadr(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
ACTIVATE(n__zWadr(X1, X2)) → ZWADR(X1, X2)
ACTIVATE(n__app(X1, X2)) → APP(X1, X2)
APP(cons(X, XS), YS) → ACTIVATE(XS)
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ZWADR(cons(X, XS), cons(Y, YS)) → APP(Y, cons(X, n__nil))

The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, n__app(activate(XS), YS))
from(X) → cons(X, n__from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS)))
prefix(L) → cons(nil, n__zWadr(L, prefix(L)))
app(X1, X2) → n__app(X1, X2)
from(X) → n__from(X)
niln__nil
zWadr(X1, X2) → n__zWadr(X1, X2)
activate(n__app(X1, X2)) → app(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__zWadr(X1, X2)) → zWadr(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
ACTIVATE(n__zWadr(X1, X2)) → ZWADR(X1, X2)
ACTIVATE(n__app(X1, X2)) → APP(X1, X2)
APP(cons(X, XS), YS) → ACTIVATE(XS)
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ZWADR(cons(X, XS), cons(Y, YS)) → APP(Y, cons(X, n__nil))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ZWADR(x1, x2)  =  ZWADR(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
ACTIVATE(x1)  =  ACTIVATE(x1)
n__zWadr(x1, x2)  =  n__zWadr(x1, x2)
n__app(x1, x2)  =  n__app(x1)
APP(x1, x2)  =  x1
n__nil  =  n__nil

Lexicographic path order with status [19].
Quasi-Precedence:
[cons2, nnil] > ACTIVATE1 > ZWADR2

Status:
nzWadr2: [2,1]
nnil: multiset
ACTIVATE1: [1]
ZWADR2: [1,2]
cons2: [1,2]
napp1: [1]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, n__app(activate(XS), YS))
from(X) → cons(X, n__from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS)))
prefix(L) → cons(nil, n__zWadr(L, prefix(L)))
app(X1, X2) → n__app(X1, X2)
from(X) → n__from(X)
niln__nil
zWadr(X1, X2) → n__zWadr(X1, X2)
activate(n__app(X1, X2)) → app(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__zWadr(X1, X2)) → zWadr(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.